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in  reciprocal  space, pe rpendicu la r  to  t he  planes  (001) 
of  t he  layers (see, for example ,  Zachar iasen  (1947)). This 
is t he  d i rec t ion  in which  t he  s t reaks are ac tua l ly  
observed.  Similar  s t reaks will, of  course, be expec ted  to 
occur in the  diffraction p a t t e r n  of  t he  twin  componen t s  
I I ,  IV,  VI,  .... The  n u m b e r  of  specimens which  we have  
e x a m i n e d  is compara t ive ly  small,  bu t  r a the r  sur- 
pr is ingly  the  s t ronges t  s t reaks have  been  recorded  wi th  
a spec imen  which does no t  appear  to  show twinning .  
P resumably ,  in this  specimen,  t he  tw in  componen t s  
I, I I I ,  V, ... have  grown m u c h  larger t h a n  t he  twin  
componen t s  I I ,  IV,  VI,  .... 
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This paper is concerned with the relations between a set of points, called the fundamental set, and 
the set of points at the ends of vectors between the points of the fundamenta l  set, called the  vector 
set. This is the same relation, in idealized form, tha t  obtains between an electron-density map and the 
Patterson map of a crystal structure. A simple algebra is first set up to handle the characteristics 
of interest in these two sets of points. A most  useful characteristic of the vector set is tha t  in it are 
images of the polygons of points in the fundamental  set. These polygon images can be systematical ly 
examined with the  aid of a matr ix  concerned with the points of the vector set. 

A vector set can be synthesized into images of several lines of the fundamenta l  set. These line 
images can be combined in a very l imited number  of ways, one of which comprises the points of the  
fundamenta l  set. Furthermore,  any vector set of n 2 points can be synthesized into images of polygons 
in two different ways, either of which requires only ( n -  1) steps. The last stage provides the funda- 
menta l  set. Thus, any vector set can be solved for its fmldamenta l  set. This implies that ,  practical 
difficulties aside, a Pat terson synthesis can be t ransformed into an electron-density synthesis. 

The relations between the symmetries of the fundamenta l  set and  vector set are discussed with the 
aid of the vector-set matrix.  I t  is shown that  every symmet ry  element  present in the fundamenta l  
set occurs as its parallel, translation-free residue at the lattice points of the vector set. Only twenty-  
three space groups occur in vector sets. A table provides a list of the  space groups of vector sets 
corresponding with the space groups of fundamental  sets. 

Although the translation components  of the symmet ry  elements of the fundamenta l  set are not  
transferred to the symmet ry  elements of the vector set, nevertheless these translation components  
are not  lost, and can be distinguished by concentrations of points in the vector set. With the aid 
of this feature, the space group of the fundamental  set can be identified in the vector set, except 
tha t  space groups of the fundamenta l  set which differ only by a group of inversions, or which are 
related by an inversion, cannot be separately distinguished. An example of the practical use of 
this theory in determining the space group of a crystal is provided. 
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Fundamental  aspects of  vector sets 

Introduction 

The developments in this paper constitute an ex- 
tension of some basic ideas in  a paper by  Wrinch  (1939) 
o n '  Vector Maps ' .  The relations between a set of points 
and the vectors between the points are of considerable 
importance in the field of crystal-structure analysis 
because the locations of the atoms in a crystal corre- 
spond to a set of points, while the Pat terson function 
(Patterson, 1934,1935 a, b) of the crystal corresponds to 
the vectors between the points. In  this paper, it  is 
shown, first, tha t  any  genera l '  vector set '  can be solved 
for its fundamenta l  point set or sets. In  a broad way, 
this  indicates tha t  crystal structures can be solved from 
diffraction data. I t  is also demonstrated tha t  a vector 
set contains a key to the symmet ry  of its fundamenta l  
set, and therefore space groups, with a few exceptions, 
can be determined from Pat terson syntheses. 

Fundamental sets and vector points 

Consider a set of points, a, b, c, ..., in any  number  of 
dimensions. Let  the sign + be used to designate the 
adding of a t e rm to a collection. Then the set of points 
a, b, c, ... is represented by  the sum a +  b + c  + .... 
Obviously addit ion is associative and commutat ive.  

To emphasize the fact tha t  the vector set is based on 
this set, i t  will sometimes be termed the  fundamental set 
of points. 

Let  the vector from, say, point p to point q in the 

fundamenta l  set be given the designation pq. Let all 
such vectors constructed in the fundamenta l  set be 
shifted so tha t  they  radiate from a common origin. The 
vectors are now said to exist in vector space. The point  

at  the end of vector pq in vector space is designated pq, 
and is regarded as a kind of ' p roduc t '  of p and q, two 

points in the fundamenta l  set. Since Pq4qP,  Pq•qP, 
i.e. mult ipl icat ion is not  permutat ive.  The distr ibutive 
character of mult ipl icat ion is examined in the next  
section. 

Images 

The point  ab is the point at  the end of vector ab. I t  
can be described as the way point b looks from point a. 
Similarly, ab + ac consists of two points, one at  the end 

of the vector ab and the other at  the end of vector ac. 
Since ab is the way b looks from a, and ac is the way c 
looks from a, ab + ac is the way the two points b and c, 
i.e. b + c, look from a. Since b + c define and delimit  the 
line b, c, a(b + c) is the  way the line b + c looks from a. 
This is evident ly  equivalent  to the way the points b 
and  c look from a, so it follows tha t  ab + ac = a(b + c). In  
other words, mult ipl icat ion is distributive. 

According to Wrinch 's  nomenclature (Wrinch, 1939), 
a(b +c) is called the image of the line b + c  in point a. 
Evident ly  this nomenclature can be extended to any  
collection of points. Thus a(b+c+d)  is the image in 
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point a of the triangle whose vertices lie at  b, c and  d, 
and, more generally, a ( l + 2 + 3 + 4 + . . . + n )  will be 
spoken of as the image of a polygon of n vertices (i.e. an  
n-gon) in a. This nomenclature should not be inter- 
preted to mean  tha t  the polygon is necessarily planar.  

Vector sets 

Given a fundamenta l  set, the  vector set consists of the  
set of all points at  the ends of vectors drawn between 
points in the fundamenta l  set. Figs. 1 and 2 i l lustrate 
the relation between a set of points and its vector set. 
The fundamenta l  set, shown in Fig. 1, consists of the  
locations of the five brightest  stars in the constellation 
of the Southern Cross, the labels being their  s tandard  
designations. I f  vectors are drawn between all pairs of 
points in Fig. 1 and then assembled at  a common origin, 
the points at the ends of the vectors are those shown in 
Fig. 2. 

Fig. 1. 

~8 

o 

~a 

& 

Fig. 2. 

Evident ly  the vector set can be represented by  the  
sum of all the  products which can be formed by  using 
two points at  a t ime from the  fundamenta l  set. I f  the  
fundamenta l  set is a + b + c + d + . . . ,  the  vector set is 

V ( a + b + c + d +  ...) = aa + ab + ac + ad + ... 

+ba+bb +bc +bd+ ... 

+ca+cb +cc+cd  +. . .  

+ d a + d b + d c + d d + . . .  

+ . . . . . . . . . . . . . . . . . . . . . . . . . . .  (1) 

The vector-set matrix 

A compact and orderly representation of a vector set 
is a square mat r ix  composed of all the products which 
can be formed from points in the fundamentM set: 

ab ac ad . . . \  
I 

i 
. . . ) = l  ~ cb ~ ~. . . |  (~) V ( a + b + c + d +  da d~ de dd... " 

1 ....................... / 
The main  diagonal of this mat r ix  contains points at  the 
end of vectors aa, bb, cc, dd, etc. These are null  vectors, 
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so the points lie at the origin of vector space. I t  is 
evident that  ff the primitive set contains n points, the 
vector set contains n 2 points, of which n are origin 
points and n g - n  are non-origin points. Points sym- 
metrical in the main diagonal are permuted products, 
such as ab and ba. Since these points are at the ends of 

vectors ab and ba, and since ab = -ba ,  it follows that  
ab = - ba. Thus the vector set matrix is skew symmetric. 
While the main diagonal of the matrix is a line of 
symmetry,  it represents a center of symmetry in the 
vector set because ab = -ba.  Thus, all vector sets are 
centrosymmetrical. 

Because of the skew symmetry of the matrix, if any 
two columns (or rows) of the matrix are interchanged, 
the corresponding rows (or columns) become auto- 
matically interchanged also. Such an interchange 
merely corresponds to an interchange of labels on the 
corresponding points of the fundamental set. 

Synthesis of vector sets 

Image properties of the vector-set matrix 

Any column or part  of a column of the vector-set 
matrix is a collection of images of the same point in the 
row points. For example, in (2), the part  of the second 
column ab 

bb 
cb 

represents the images of point b in points a, b and c. 

o 

o 

o 

o 
o 

o o 

o o 

o 

0 o 

Fig. 3. Fig. 4. 

Corresponding parts of any two columns represent 
the images of a specific line in the row letters. For 
example, parts of the second and third columns, 

ab ac a(b+c) ] 

bb bc = b(b+c) f ,  (3) 
cb cc c(b + c) 

is a collection of images of the line b + c in the points a, 
b and c. Figs. 3 and 4 show that  the collection of images 
of a line are parallel displacements of the same line as 
it occurs in the fundamental set. Similarly, corre- 
sponding parts of n columns represent a collection of 
images of a specific n-gon in the row points. The images 

are parallel displacements of the n-gon which occurs in 
the fundamental set. 

Because of the symmetry of the matrix, the words 
'columns'  and ' rows' ,  in the above discussion, can be 
inter-changed. Another aspect of this symmetry is as 
follows. Since 

(a-t-b-t-c+ ... ) p =ap + bp + cp + ... 
= - p a - p b  - p c . . .  

= - jo (a+bTc+. . . ) ,  (4) 

it follows tha t  the negative of an image is the centro- 
symmetrical image. Thus to each set of images repre- 
sented by sets of columns, the vector set contains the 
corresponding centrosymmetrical images represented 
by sets of corresponding rows. 

I t  is evident that  a vector set derived from a funda- 
mental set of n points can be synthesized into n images 
of an n-gon, or into n images of an ( n -  1)-gon plus n 
images of a point, or into n images of an ( n -  2)-gon plus 
n images of a line, or, in general, into any collection of 
images which can be represented by the columns. 

The first synthesis, namely, n images of an n-gon, is 
interesting. The n-gon is represented by the entire row 
and the image points by the column letters. This 
synthesis is 

V ( a + b + c + d +  ...) = a ( a + b + c + d  + ...) 
+ b ( a + b + c + d +  ...) 
+ c ( a + b + c + d +  ...) 
+ d ( a + b + c + d +  ...) 
+ . . . . . . . . . . . . . . . . . . . . . . . . .  (5 )  

This signifies tha t  the vector set can be synthesized into 
images of the primitive set in each of its points. An 
illustration of this for the vector set of Fig. 2 is shown 
in Fig. 16. The pentagon has vertices at  the points of 
the fundamental set shown in Fig. 1. 

Synthesis into sets of lines 

The synthesis of a vector set into images of several 
lines is illustrated for the vector set of Fig. 2 in Figs. 5 
and 6. Such a synthesis is guided by the matrix of the 
vector set. For the five-point fundamental set of Fig. 1 
and its vector set of Fig. 2, this matrix representation, 
partitioned for purposes described below, is 

]aa ab ac ad a e \  

I ba bb bc bd be I 

..... .+-! ..... ...... - -+------ : - I  (° ,  
V,+ ,+b ,++ + '++l 
\ e a  eb ec e+ e e l  

Any pair of rows or columns may be chosen for images 
of the first line. By a labelling interchange accompanied 
by column (and row) interchanges, the chosen images 
may be made to occupy the last two columns. (This 
labelling transformation is unnecessary, but  it simplifies 
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the description of the illustration.) The last two 
columns are 

ad ae a(d÷e)  I 

l 
bd be b(d~- e) 

cd ce -- c(d+e) . (7) 

dd de d(d+ e) 

ed ee e(d-~ e) 

The bottom two terms represent the image of the line 
(d÷e)  in its two ends. Sincea labelling interchange of 
the fundamental set is permissible, a line from the origin 
to any point in the vector set may be identified with 
either of these two images. For the purposes of this 
illustration, the bottom image of (7) has arbitrarily 
been chosen as the line t?fl ÷ f i t  of Fig. 2. The remaining 
points in (7) can be identified by merely finding lines 
in Fig. 5 parallel and equal to the origin lines originally 
chosen. This procedure not only locates the five lines o 

°'~"""'~'~'~ @/": : i . .  /./...:"""/"" 

Fig. 5. Fig. 6. 

of (7), which accounts for the entire right partition of 
(6), but  also the three more lines in the lower left parti- 
tion of (6) which are symmetrical with (and, therefore, 
in the vector set of Fig. 5, centrosymmetrical with, and 
consequently parallel to) the lines in the upper right 
partition of (6). 

The vector set of Fig. 5 now stands synthesized into 
eight lines, plus six non-origin points unconnected by 
lines. These unattached points are the six non-diagonal 
elements of the upper left partition of (6). This entire 
partition, subpartitioned for purposes described below, 
is aa ab a,e 

ba bb bc (8) 

ca cb cc 

Any two columns of (8) represent three images of either 
lines a ~- b, a-t- c or b ~- c. For clearness, suppose that  
line b ÷ c is chosen. This is the right partition of (8), but 
in the case of lines, the images include centr.osym- 
metrical lines, so that  they include the lower left 
partition of (8). This means that  if any of the remaining 
unattached points of Fig. 5 is connected with the origin, 
it establishes a total  of four line images. Of these, (8) 

shows tha t  two are origin images while two are non- 
origin images which are centrosymmetrical equivalents, 
namely, a(b + c) and (b + c) a. These are drawn in Fig. 6 
(as images of a a + a e  of Fig. 2). Now, origin images 
can be recognized in the vector set (Fig. 6) as well as in 
the matrix. Omitting origin images, the matrix has 
been synthesized into the non-origin images of lines 
outlined in blocks, as follows: 

/ = \ 

The non-origin images of lines can be combined in 2 × 6 
different ways, of which half are centrosymmetrical with 
the other. Two of these, taken together with an origin 
point, are the fundamental set and its eentrosym- 
metrical equivalent. These are represented in the 
matrix (9) as the top row and left column. These two 
centrosymmetrical combinations are outlined as poly- 
gons in Fig. 6. 

In  general, the vector set of an n-point fundamental 
set contains n 2 - n  non-origin points. The number of 
ways of selecting n points from this set is (,~_~)C~, 
while the number of ways of combining line images is 

2 ( n - 2 )  2 ( n - 4 )  2 ( n - 6 ) . . . 2 . 1  for n odd, 

and 2 ( n - 2 )  2 ( n - 4 )  2 ( n - 6 ) . . . 2 . 2  for n even. 

In both cases half are centrosymmetrical. For the five- 
point fundamental set one combination of points in 
4845 is the fundamental set, whereas one line-image 
combination in six is the fundamental set (or its centro- 
symmetrical equivalent). 

Synthesis into a spectrum of polygons 

A vector set based on a fundamental set of n points 
can be easily and quickly solved for the fundamental 
set in n -  1 stages. This is again illustrated with the aid 
of the vector set of Fig. 2, which is based on the five-point 
fundamental set of Fig. 1. The n - 1 - - 4  stages are 
illustrated in Figs. 7, 8, 9 and 10. By simply adding the 
appropriate number of additional stages, the same 
routine can be applied to any larger general vector set. 

The first stage consists of establishing all the images 
of an origin line. For this purpose any point is selected 
and connected with the origin to form the image of tha t  
line containing the origin, and then all its images are 
located as discussed in the last section (Fig. 6). 

At this stage all the points of the matrix have been 
connected with line images except those of the upper left 
partition of (6). Two of these line images contain the 
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origin. Now to any of the remaining six non-origin line 
images there may be added a point in the same row, 
thus creating a triangle whose images can be found. A 
particular point can be easily identified, namely, the 
point on the main diagonal, for this corresponds to the 
origin point in Fig. 7. For convenience of discussion, let 
the diagonal point be added to the third row from the 
bottom, then form the images of this triangle from the 

In a similar way, a point can be added to either of the 
non-origin triangle images, transforming it into a 
quadrilateral. A particular point can be readily identi- 
fied, namely, the one on the main diagonal. For clear- 
ness, suppose the diagonal point is added to the fourth 
row from the bottom. This establishes a quadrilateral 
image in the last four columns. Form the image of this 
quadrilateral by adding the unattached point in the top 
row to the triangle in the top row. The polygons in the 
matrix can now be represented as 

~ . . . I ~  ~ .... 

a c t  

ba 

c a  

da 

e a  

ab ac ad ae I 

bb bc bd be } 

cb cc cd 

eb ec [ - ~  

(11) 

o o 

Fig. 7. Fig. 8. 

.......... o 
. . . .  

o o "  

. o . - . . o  

'°~" "" o 

Fig. 9. Fig. 10. 

remaining non-origin line images plus unattached 
points. The synthesis of points in the matrix now stands 

aa ab 

ba bb 
I 

bc bd be I 

cc . cd ce I . (10) 

In the vector set (Figs. 7 and 8) this stage consists of 
adding the origin point to any non-origin line image, 
then finding the appropriate unattached point in the 
region of each of the remaining non-origin line images 
which, together with it, comprise a triangle similar to 
the one established at the origin. 

The equivalent operations in the vector set (Figs. 8, 9) 
consist of attaching the point at the origin to any of the 
non-origin triangles, then finding the appropriate un- 
attached point in the region of each of the remaining 
non-origin triangle images which, together with it, com- 
prise a quadrilateral similar to the one established at the 
origin. 

The final stage consists of adding the remaining 
origin point to the non-origin quadrilateral (Fig. 9). The 
vector set then appears as in Fig. 10, and the matrix 
appears decomposed into the following blocks: 

a a  

ba 

c a  I 

da 

e a  

ab ac ad ae I 

bb bc bd be ! 

cb cc cd ce I " 

eb ec ~ [ ~  

(12) 

The vector set is now synthesized into (1) an image 
of a point in itself, (2) an image of a line in one of its 
points, (3) an image of a triangle in one of its vertices, 
(4) an image of a quadrilateral in one of its vertices, 
(5) an image of a pentagon in one of its vertices, all plus 
the centrosymmetrical polygons. That is, the vector set 
has been synthesized into a spectrum of images of 
polygons, each in a vertex, plus the centrosymmetrical 
spectrum. The polygon of greatest rank contains the 
.points of the fundamental set. This is the first row, or 
first column of (12). One of the two pentagons of Fig. 10 
contains the points of the fundamental set (Fig. 1), and 
the other contains its centrosymmetrical equivalent. 

The choice of the particular 'polygon' to which the 
origin point is added at each stage is immaterial. Two 
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alternate solutions to the same vector set are shown in 
Figs. 11 and 12. 
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Fig. 11. Fig. 12. 

Synthesis into identical ~olygons 

"o 

a .  

'x. " ' o  : 

A vector set based on a fundamental set of n points 
can be easily and quickly solved for the fundamental 
set in n - 1  stages by an alternative procedure which 
results in the synthesis of the points into n identical 
n-gons, namely, those indicated in (5). The stages of 
the solution are illustrated for the set of Fig. 2, which is 
based on the five-point fundamental set of Fig. 1, in 
Figs. 13, 14, 15 and 16. 

The first stage consists of connecting any non-origin 
point with the origin, thus establishing a line, and then 
finding the images of the resulting line. This part of the 
procedure is identical with that  described in the first 
stage of each of the two preceding methods of synthesis. 

point is added to the line image in the middle of the last 
pair of columns of (13). The images of this triangle then 
occur in the matrix as blocked out as follows: 

aa ab l ac ad ae [ 

ca cb ]cc cd ce ] . 

da db I dc dd de ! 

(14) 

To form all five images, it is necessary to utilize the 
two points of one of the enantiomorphous column line- 
images of (13). In the vector set (Figs. 13 and 14) the 

/ ' J :  

o, . ~ j  o 

o o 

Fig. 13. Fig. 14. 

The synthesis of the set then stands as shown in Fig. 13, 
and the matrix stands blocked into line images as 
follows: 

aa ab ac tl ad ae I 

d'] 
o 

The matrix shows that this results in eight separate line 
images, of which three non-origin lines can be regarded 
as 'right-handed' images, three more as the 'left- 
handed' equivalents of these, and two origin images 
which may be said to be '  right-handed' or '  left-handed' 
at pleasure. Since right-handed and left-handed parallel 
lines are indistinguishable as such, these eight cannot be 
classified and separated at this stage, but in the next 
stage one of the two sets of enantiomorphous lines will 
be discarded. 

Any of the non-origin lines of (13) can be transformed 
into a triangle by adding a point. An origin point is 
added for this purpose, since it can be readily identified 
in both matrix and vector set. Suppose that the origin 

Fig. 15. Fig, 16. 

origin point is added to any line, thus establishing a 
triangle. In the example shown, the upper one of the 
two lines nearest the origin is arbitrarily chosen, thus 
establishing a triangle with an apex pointing down. (If 
the lower line had been chosen, thus establishing the 
centrosymmetrical triangle with an apex pointing up, 
the final solution achieved by the process discussed here 
would have been the 9entrosymmetrical solution.) The 
matrix, (14), shows that five parallel identical triangle 
images can be formed. This requires making use of the 
parts of one of the enantiomorphic line images, as 
pointed out above. When the five triangle images have 
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been located, this automatically identifies all five'  right- 
handed'  line images of the previous stage, and dis- 
qualifies the three excess images from further use as 
being ' left-handed' .  These are forthwith decomposed 
into their original points. Two of these released points 
are attached to two of the origin triangles, as described 
above, the other four being available for subsequent 
image-formation. 

In the next stage, a point is added to either of the 
two non-origin triangles, creating a quadrilateral. A 
particular point, namely, the origin point, can be identi- 
fied in the matrix and in the vector set (Fig. 14). The 
four additional images of this quadrilateral are now 
formed, and the matrix stands blocked into images as 
follows: 

a a l a b  ac ad ae I 

ba ] bb bc bd be[ 

ea ] eb ec ed ee I 

• ( 1 5 )  

The corresponding operations in the vector set (Fig. 14) 
consist of adding an origin point to either of the two 
non-origin triangles, thus creating an origin quadri- 
lateral (Fig. 15). The four images of this quadrilateral 
are then formed in the usual way. 

The final stage of the synthesis consists of adding an 
origin point to the one quadrilateral in (15) not con- 
raining a diagonal point, namely, the upper image. The 
images of this quadrilateral are the other four rows. The 
matrix now stands synthesized into pentagons as 
follows: 

l aa ab ac ad ae I 

I[ ba bb bc bd be I 

ca cb cc cd ~e . (16) 

Ida db dc dd de I 

lea eb ec ed e e } /  

In  the vector set, the corresponding operations consist 
of adding an origin point to the only non-origin quadri- 
lateral, thus transforming it into a pentagon, and 
finding the images of this pentagon. The result is shown 
in Fig. 16. 

The collections of points at the vertices of each 
pentagon of Fig. 16 is identical with the original funda- 
mental set (Fig. 1) (or with its centrosymmetrical 
equivalent, in case the original choice of lines and 
triangles was the centrosymmetrical set). This synthesis 
can be carried out for any larger set by adding a suitable 
number of additional stages. 

Per iod ic  sets  

The discussion has been tacit ly confined to non-periodic 
sets and their vector sets. Attention is now directed 
briefly to periodic sets and their vector sets. 

To illustrate the features involved in periodic sets, 
consider Fig. 17 (which shows a simple diperiodic funda- 
mental set) and Fig. 18, its vector set. Select a unit cell 
in the fundamental set containing a representative 
motif set in the fundamental set, such as a + b + c. Con- 
sider the products between subset a + b + c  and any 
translation-equivalent subset a'+b'+c' .  I f  T is the 
translation which relates these two subsets, then the 
interperiod products are: 

aa'=aa H- T, 
ab' = ab + T, 
ac' = ac + T, 

ba' = ba + T, ca' = ca + T, ] 
bb'=bb+ T, cb'=cb+ T,~ 

bc' = bc + T , cc' = cc + T. ) 

(17) 
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o 
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Fig. 18. 

Some obvious conclusions can be drawn from this 
simple analysis of interperiod products: 

(1) The vector set of a periodic fundamental set con- 
sists only of the vector set of the points of one funda- 
mental cell, modulo L (where L is the translation group 
of the fundamental set). 

(2) The vector set is therefore also periodic and has 
the same lattice as the fundamental set. 

(3) No additional vector points arise which can be 
regarded as arising from interperiod vectors, which are 
not present due to the motif itself. 

From the last conclusion, it follows that ,  in order to 
solve a periodic vector set for its periodic fundamental 
set, it is sufficient to consider a unit cell of the periodic 
vector set which centrosymmetrically surrounds the 
origin point. I f  the subset within this field is treated 
according to one of the solution methods outlined in the 
last section, the solution achieved consists of the points 
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in the unit cell of the fundamental set, or its centro- 
symmetrical equivalent. 

H o m o m e t r i c  sets 

In the investigation of the crystal structure of bixbyite, 
Pauling & Shappell (1930) discovered that  more than 
one fundamental set may have the same vector set. 
Patterson (1939) called such fundamental sets homo- 
metric sets. He has recently established the existence of 
a number of sets of homometric sets in certain com- 
paratively simple kinds of fundamental sets. 

I f  the vector set is solved for the fundamental set as 
suggested in a foregoing section, all homometric solu- 
tions are automatically encountered. 

the vectors are transferred to vector space, they are all 
shifted to a common point. This corresponds to a 
removal of the translations which separate the origins 
of the vectors. The transformation to vector space 
therefore results in a loss of the translation component 
of the symmetry element connecting them, although 
the angular relations between vectors remains intact. 
I t  follows that  the vectors transferred to vector 
space retain only the translation-free aspects of the 
symmetry element. I t  also follows that  the points at 
the ends of the vectors, namely, the vector points, 
are related by the translation-free residue of the sym- 
metry element which related the points of fundamental 
space. 

Symmetry properties of vector sets 

Symmetry of vectors in the fundamental set 

The way in which the symmetry of the fundamental 
set appears in the vector set can be studied in a number 
of ways. I t  is interesting to make use of the vector-set 
matrix in this connection. 

Consider a general symmetry element, say a screw, 
and let the points related to a 0 by the 0, 1st, 2nd, 3rd,... 
powers of the generating operation of the group of the 
symmetry element be designated by a 0, a~, a~, a3, ..., and 
the points related to b 0 by these operations be designated 
b e, b 1, b~, ba, ..., etc. The fundamental set is then 

ao+al+a~+a3+ ... +bo+bl+b~+ba+ .... (18) 

In this set, a 1 bears the same relation to az, say, as ae 
> 

bears to a~. Therefore, the vector ala a in fundamental 

space is carried into vector a~a a by the first power of 
> 

the generating symmetry operation. Similarly, a~ b~ is 
> 

carried into aa ba by the second power of this operation. 
In general, the following sequences are related by the 
power of the operation indicated: 

> . > " ~  

a~aq, a~+laq+l, 1st power, ! 
a~bq, a~+~bq+l, 1st power,( (19) 

)- > 1 a~bq, a~+~,bq+,,, nthpower. 

(Note that  when a = b and p =q, these sequences de- 

generate to a~a~, a~+,,a~+,,. This is a sequence of null 
vectors located at 

al, al+~, (20) 

so that  the vectors of (19) degenerate into those points 
of (18) which are related by the nth power of the same 
symmetry operation.) 

Symmetry of vectors and vector points in vector space 

The vectors of (19) in fundamental space conform to 
the symmetry element of fundamental space. But when 

Symmetry relations in the matrix of the vector set 

Let the points within a cell of the fundamental set be 
arranged in symmetry cycles with regard to a chosen 
symmetry element, as in (18). The matrix of the cell of 
the vector set, partitioned according to symmetry 
cycles, is 

t :  a° aoal aoa~ aoaa "'" i aobo aobl aob2 aoba "''~ 
l ao al al alas alas "'" i ch b° al bl al b9 a l b 8 ... 
2ao a2a 1 a 2 a  2 a ~ a  3 . . .  a2b o a~bl a~b 2 a~b 3 ... 
aao aaql aaa2 aaa8 ... :: aabo aab~ aab~ aaba ... 

° ° ° , , , , , , , , , , , . . . , . . . , . , , . ° , . .  i ° ° ° ° ° ° ° . ° ° ° ° ° , ° , ° ° ° , ° . . . ° . . . ,  

• ° , , , , , . , , , ° ° ° ° , ° ° , ° , , , , , , , ° ° °  . ° . . . . .  ° . . . . . . . .  ° . ° , , ° , , ° , , , ° °  

boao boa1 boa2 boa3 ... bobo bob1 bob~ boba ... 
bl ao bl al bl a~ bl aa ... bl bo bib1 bl b~ bl ba ... 
b~a o b~a 1 b~a~ bga 3 ... b~b o b~b 1 b~b~ b~b 3 ... 

(21) 

According to the discussion given in the second last 
section above, the elements which conform to the 
sequence a~ bq, a~+ 1 b~+ 1 are related by the first power of 
the operation of the symmetry element. Such elements 
lie parallel to the main diagonal within any partition. 
Since the entire row (or column) is related to its neigh- 
boring rows (or columns) in this fashion, entire neigh- 
boring rows (or columns) conform to the symmetry 
element. But according to image theory, these rows (or 
columns) are images of the same polygon, and hence 
parallel. Each partition, therefore, consists of sym- 
inetrically placed parallel images of an n-gon, where n 
is the number of operations in the group of the sym- 
metry element. 

In order to display the symmetry elements of the 
entire vector set of points, the matrix may be condensed 
in the following way: Since multiplication is distributive, 
products with common terms may be gathered together. 
The most general way in which this can be done is to 
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add together corresponding terms from all partitions space groups of the vector sets corresponding with the 
in (21). The condensed matrix is space groups of the fundamental sets. 

I 
(ao+bo+... (%+50+. . . )  (a0+b0+.. . )  (a~+bl+. . . )  (a0+b0+.. . )  (a~q-b~.+...) (a0+b0+.. . )  (aa+ba+. . . ) . . .  

(al q-bl q-...) (ao+bo+...) (al q-bl q-...) (al q-bl q-...) (al q-bl q-...) (a~q-b2q-...) (al q-bl q-...) (aa+ba+. . . ) . . .  

(a2q-b~.+...) (ao+bo+...) (a2+bg÷...) (al q-bl +...) (a~q-b2q-...) (a2-bb~+...) (a~q-b~+...) (aa+ba+. . . ) . . .  

(aa+ba+. . . )  (ao+bo+...) (aa+ba-}-...) (al+bl-}-...) (a3+b3-}-...) (a~+bg+...) (aa÷ba+. . . )  (aa+ba+. . . ) . . .  

(22 
As an abbreviation, let 

(ao+bo+ . . .)=A o, 
(al--kbl + .. .)=A 1, 
(a~+b~+.. .)=Aw) 

Then(22) h a s t h e  ~ r m  

IAoAo AoA1 AoA~ 
A1Ao A1A1 AIA~ 
A2Ao A2A1 A2A2 
A3Ao A3A1 A3A2 

AoAa AoA4... 
A1A3 A1A4... 

A2Aa A~A4... 
A3A3 AaA4... 

(23) 

(24) 

. . ° . . . . . . . .  . . . .  ° . . ° ° ° ° °  . . . .  . . . ° . . ° . . ° ° ° ° ° ° . . . o °  o 

. . . . .  . ° . . . ° o ° ° ° ° ° ° . ° . . . . . . ° ° . ° ° ° ° ° . ° ° ° . . ° ° . . . ° . °  

All elements of (24) related by the direction of the main 
diagonal are related as (19), so they are related by the 
primitive operation of the translation-free residue of the 
symmetry element present in the fundamental set. I t  
follows that  both columns and rows of (24) are related 
by this symmetry element. This means that  the vector 
set can be synthesized into subsets of complex parallel 
images related by the translation-free symmetry element 
of the fundamental set, as well as by an inversion center. 

TttEORE1V[. I f  the fundamental set contains a given 
symmetry element, the vector set contains the parallel, 
translation-free residue of that symmetry element through 
the origin. 

Note. Since 

A~Aq=(a~+b~+...)(aq+bq+...), (25) 

the significance of each complex product in (23) and 
(24) is the image of a representative collection of all 
non-equivalent points in those of another such col- 
lection which is related to the first collection by the 
symmetry operation. 

The possible symmetries of vector sets 
I t  follows from the theorem given in the last section 

that  the space group of a vector set can be derived from 
the space group of its fundamental set by substituting, 
at  the lattice points of vector space, the translation-free 
residue of each generating symmetry element in the 
fundamental set, completing the group by forming the 
products of the operations of these elements with the 
lattice, and further requiring the vector space group to 
contain the operation of an inversion at the origin if not 
already present in the group. In Table 1 are listed the 

Characteristics distinguishing the fundamental space 
groups in vector space 

Although the possible sets of points in vector space 
correspond to only the space groups listed in Table 1, 
this does not imply that  the space group of the funda- 
mental set from which the vector set is derived cannot 
be distinguished in the vector set. I t  is true that  the 
characteristic translation component of any symmetry 
element in the fundamental set does not appear in the 
vector set as a part  of the symmetry of the set, but it 
does appear in another way which permits it to be dis- 
tinguished. When matrix (21) is arranged for a parti- 
cular symmetry element, all products in the partitions 
along the main diagonal are products of symmetry- 
equivalent points in the fundamental set. Such pro- 
ducts are concentrated in n equally spaced levels per 
cell along the symmetry element in the vector set, where 
n is the number of translation components of the sym- 
metry  operation equal to the lattice translation in that  
direction. All products of (21) which are not in the 
diagonal partitions are irregularly distributed through- 
out the unit cell of the vector set. 

This implies that  the translation components of all 
symmet ry  elements can be distinguished by recognizing 
the loci of concentration of points in vector space. Since 
the space lattice type and characteristic translation 
component of the generating symmetry elements can 
be thus recognized in vector space, it follows tha t  the 
space group of any fundamental set can be recognized in 
the vector set except that space groups differing only by 
a group of inversion centers cannot be separately re- 
cognized. The space-group pair P 1, PY, also C3, C3, 
for example, differ only by groups of inversion centers 
and cannot be separately distinguished in vector space. 

These conclusions are identical with those reached by 
implication theory (Buerger, 1946) on a different basis, 
namely, that  of the presence or absence of satellites. 

Example of space-group determination 
To illustrate the use of vector sets in space-group 

determination, the following example is cited with the 
permission of Dr Alfred E. Frueh (Frueh, 1947). In 
studying the structure of the monoclinic crystal claude- 
rite, As203, the extinctions appeared to indicate the 
space group P21/n , but there appeared to be one 
questionable very weak reflection of 0k0 with k odd. 



Table 1. 

Crystal 
system 

Triclinic 

Monoclinic 

0rthorhombic 

Tetragonal 

Hexagonal 

Isometric 

Space groups of the periodic fundamental points sets and the space groups of their corresponding 
periodic vector sets 

Space group 
Space group of fundaxnental point set of vector set 

P1 iPl 
PT 

Pro, Pc P2/m 
P2, P21 

. . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Gin, Cc C2/m 
G2 
G2/m, C2]c 

.Prom2, Pmc21, .Pcc2, .Pma2, Pca21, .Pcn2, Pmn21, Pba2, .Pna21, Pnn2 Pmmm 
P222, P2221, P21212, P212x21 
Pmmm, Pnnn, Pccm, .Pban, Pmma, Pnna, Pinna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Proton, 

Pbcn, Pbca, Pnma 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Cram2, Cmc2p Ccc2, G2mm, G2ma, C2cm, C2ca Cmmm 
C2221, C222 
Cmcm, Cmca, Cmmm, Cccm, Cmma, Ccca 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

From2, Fdd2 Fmmm 
F222 
Fmmm, Fddd 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Imm2, lba2, Ima2 Immm 
/222, 1212121 
Immm, Ibam, Ibca, Imma 

p-~ P4/m 
P4, P41, P4~., P4 a 

. . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1~ I4lm 
I4, 141 
I4/m, I41/a 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

P-42m, _P~2c, ~21m,  P421c, P-4m2, _P4c2, .P-4b2, P-4n2 P4/mmm 
P4mm, P4bm, P4cm, P4nm, P4cc, P4nc, P4mc, P4bc 
_,o42, P421, P412, P4121, P422, P4221, P4a2, P4a21 
P4/mmm, P4/mcc, .P4/nbm, P4]nnc, P4/mbm, P4/mnc, P4/nmm, P4ncc, P4/mmc, P4/mcm, 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1~m2, I;~c2, .I~2m, 1-42d I4/mmm 
I4mm, I4cm, I4md, I4cd 
142,/412 
I4/mmm, I4/mcm, I4/amd, I4/acd 

G3, G31, G3~ C3 
C~ 

R3 R~ 
Rg 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

G3ml, C31m, C3cl, C31c C31m 
G312, C321, C3112, C3121, C3~12, C3~21 
C~lm, C~lc, C~ml, C~cl 
R3m, R3c R~m 
R32 
R~m, Rgc 
C6, G6~, G6s, C6~, C64, C6a C6/m 
5~6 
C6/m, C6a/m 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C~m2, C~c2, C-~2m, C62c C-6/mmm 
C6mm, C6cc, G6cm, C6mc 
C622, C6~22, C6~22, C6222, C6422, C6a22 
C6/mmm, C6/mcc, C6/mcm, C6/mmc 

P23, _P2~3 Pro3 
Pro3, Pn3, Pa3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

F23 ' Fro3 
Fro3, Fd3 

. . . . - .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/23, 1213 Im3 
Im3, Ia3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

P;~3m, P43n Pm3m 
P43,/)423, P4a3, P4x3 
Pm3ra, .Pn3n, Pm3n, Pn3m 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

F-43m, F-43c Fm3m 
F43, F413 
Fm3m, Fm3c, Fd3m, Fd3c 
1-43m, I;~3d Im3m 
/43,/413 
Im3m, Ia3d 



M . J . B  

If  this apparent reflection were real, the true space 
groups would be P2/n. Since crystals of claudetite are 
extremely plastic and can hardly be handled without 
bending, it appeared possible that  this questionable 
reflection might arise from deformation of the structure. 
Whatever the cause, the symmetry was studied by 
sectioning the vector cell at b = 0 and b = ½ with the aid 
of the three-dimensional Patterson syntheses P(x, O, z) 
and P(x, ½, z), respectively. The resulting Harker 
sections are shown in Fig. 19. The concentration of 
interactions in P(x, 1, z) over P(x, O, z) is obvious. This 
indicates that  the translation component of the twofold 
axis is ½ and not 0. The space group is accordingly 
P21/n and not P2/n. 

"x.3 b,,,. ilL/ 
', t ~'~r:-: ~),!!III I I L.//-m ~ f--'r-Q,,, ,-..:~ 

L.LJ "'+ 
- ,,tLoC X i "I + 
if(rift t ' /  I ., , . \ v ~ .  , t l  ~ u  ,. ,~, I % ~ "  "-.~./_-" I i t \V"]/~ . . . .  
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Harker-Kasper inequalities (Harker & Kasper, 1947, 
1948) and the relations pointed out by the writer 
(Buerger, 1948 a) are partial Fourier solutions, but they 
cannot be complete solutions, since both are based on 
symmetry considerations, and these carry with them 
symmetry-born ambiguities (Buerger, 1948b). The 
Fourier representation of the relation between a funda- 
mental point set and its vector set as presented in this 
paper remains to be found. 

Secondly, the general nature of the above remarks 
requires, as a particular stage of the complete crystal- 
structure analysis, that the space group be determinable 
from the vector set. Specific proof is also offered of 
space-group determination from vector sets in this 

ill  i/+ *. ~ . ~ . [ d  / I I i ~ l l  • 
Ill l [  + ~  '+'x 7 J " %  x '+ i l l  i ' i  
7/ , ' s ] ~  i st  t -  x~ l i l++ "" ' %. ~ ~G 
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(a) (b) 
Fig. 19. Harkor sections of three-dimensional Patterson syntheses of claudetite. (a) P(x, O, z) 9.. --Fouo, (b) P(x, ½, z)--.F~o o. 

Conclusions 
In this discussion of vector sets no attention has been 
given to the weighting of points in the fundamental 
set and in the vector set. This matter has been discussed 
by Wrinch (1939). Furthermore, no attempt has been 
made to consider any of the practical difficulties which 
might attend the application of any of the devices 
which have been discussed to the solution of problems 
in crystal-structure analysis, and such practical diffi- 
culties are not ' to be construed as minimized. Never- 
theless, there are some broad theoretical consequences 
of the theory of vector sets. 

No proof has hitherto been presented that  it is 
possible, in general, to solve a crystal structure from 
its diffraction data. The theory discussed in this paper 
supplies such proof. Since it is possible systematically 
to find the fundamental set or sets from the vector set, 
it is also theoretically possible to derive a set of atomic 
positions from a Patterson map. Since a Patterson map 
can always be prepared from diffraction data, the 
crystal structure can be solved from such data. I t  is 
not germane to argue that  the actual process of solving 
a crystal structure does not necessarily proceed in this 
manner, but would preferably proceed by finding the 
phases of the Fhk~'s. This merely clothes the same 
problem in its Fourier representation. Since the vector 
representation of the problem can be solved, the 
Fourier representation can be solved. Doubtless the 
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paper. This removes the limitation in the qualitative 
Fourier X-ray investigation of space groups by ex- 
tinctions. By the qualitative method only 120 dif- 
fraction groups can be distinguished (Buerger, 1942, 
p. 511). But by the vector-set method, all space groups, 
not differentiated by a group of inversion centers alone, 
can be distinguished. 
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